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Distributed Relaxation for Conservative

Discretizations

Boris Diskin *

ICASE/NASA Langley Research Center, Itampton, VA 23681

James L. Thomas t

NASA Langley Research Center, Hampton, VA 23681

A multigrid method is defined as having textbook multigrid efficiency (TME) if the so-

lutions to the governing system of equations are attained in a computational work that is a

small (less than 10) multiple of the operation count in one target-grid residual evaluatlon.

The way to achieve this efficiency is the distributed relaxation approach. TME solvers

employing distributed relaxation have already been demonstrated for nonconservatlve for-

mulations of high-Reynolds-number viscous incompressible and subsonic compressible

flow regimes. The purpose of this paper is to provide foundations for applications of
distributed relaxation to conservative dlscretizations. A direct correspondence between

the primitive variable interpolations for calculating fluxes in conservative finite-volume
discretizations and stencils of the discretized derivatives in the nonconservative formula-

tion has been established. Based on this correspondence, one can arrive at a conservative

discretization which is very efficiently solved with a nonconservative relaxation scheme

and this is demonstrated for conservative discretization of the quasi one-dimensional Eu-

ler equations. Formulations for both staggered and collocated grid arrangements are

considered and extensions of the general procedure to multiple dimensions are discussed.

Introduction

Full multigrid (FMG) algorithms a'2,9'1s'22'_a are

the fastest solvers for elliptic problems. These algo-

rithms can solve a general discretized elliptic problem
to the discretization accuracy in a computational work

that is a small (less than 10) multiple of the opera-

tion count in one target-grid residual evaluation. Such

efficiency is known as textbook multigrid efficiency

(TME). 3 The difficulties associated with extending
TME for solution of the Reynolds-averaged Navier-

Stokes (RANS) equations relate to the fact that the
RANS equations are a system of coupled nonlinear

equations that is not, even for subsonic Mach num-

bers, fully elliptic, but contain hyperbolic partitions.
TME for the RANS simulations can be achieved if

the different factors contributing to the system could

be separated and treated optimally, e.g., by multigrid

for elliptic factors and by downstream marching for

hyperbolic factors. The way to separate the factors
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is the distributed relaxation approach proposed ear-

lier. 1,2 Usually, distributed relaxation can be applied

throughout the entire domain having the full effect

away from discontinuities (shocks, slip lines) in the reg-

ular (smoothly varying) flow field. Some local relax-
ation sweeps should be applied in these special regions

after (and perhaps before) the distributed relaxation

pass to reduce residuals to the average level charac-

terizing the regular flow field. The general framework

for achieving TME in large-scale computational fluid

dynamics (CFD) applications has been discussed. 6'21

The approach to the solution of the RANS equa-

tions proposed in this paper is based on an FMG

algorithm with multigrid cycles employing distributed
relaxation. It is envisioned that the FMG-1 algorithm

(an algorithm with one multigrid cycle per level) will
provide solutions with algebraic error below the level of
the discretization error. Another useful characteristic

of the solution process is a possibility to rapidly con-

verge residuals to machine zero. The latter property

is not necessary for achieving TME, but it is highly

favored in practical applications.
The distributed re[axation-approach-relles on a prin-

cipal linearization of the governing system of nonlin-

ear equations. The principal linearization of a scalar

equation contains the terms that make a major contri-
bution to the residual per a unit change. The principal

terms thus generally depend on the scale, or mesh

size, of interest. For example, the discretized high-
est derivative terms are principal on grids with small

enough mesh size. For a discretized system, of differ-
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ential equations, the principal terms are those that

contribute to tile principal terms of the determinant

of the matrix operator.

Development of a solution method for the govern-

ing RANS system can be significantly simplified if

the target discretization possesses two properties: (1)

The discretization of the corresponding principally lin-

earized system is factorizable, =' a, 16,17 i.e., the determi-

nant of the principal part of the discrete matrix oper-

ator can be represented as a product of discrete scalar

factors, each of them approximating a corresponding
factor of the differential matrix operator determinant.

(2) The obtained scalar factor discretizations should

reflect the physical anisotropies and be efficiently solv-
able. These two properties are not necessarily required

for convergence of the algebraic errors in the FMG-1

algorithm, but they are very important for ensuring a
fast residual convergence and providing accurate solu-
tions.

Appropriate choices of factorizable discretizations
for nonconservative formulations and textbook ef-

ficient multigrid solvers employing distributed re-

laxation have already been demonstrated for high-

Reynolds-number viscous incompressible 7'=° and sub-

sonic compressible 19 flow regimes. An example of
the distributed relaxation involved in calculation of

the Euler flow with shock has been demonstrated; 21

the finite-volume collocated-grid discretization scheme
used in 21 was a standard flux-differencing splitting

scheme of Roe. 15 Applied to a one-dimensional prob-

lem, the scheme is factorizable and provides reasonable

approximations for the determinant factors. However,

in multiple dimensions, the scheme is not factorizable,

and other (factorizable) schemes should be considered.

The purpose of this paper is to provide foundations

for applying distributed relaxation to conservative dis-
cretizations of the Euler equations corresponding to
factorizable discrete schemes.

The present material is organized in the following
order: First, the Euler equations for inviscid compress-

ible flow problems are defined. Secondly, the idea of
distributed relaxation is briefly explained from both a

differential and a discrete viewpoint. The attributes of

a desired nonconservative Euler-system discretization

scheme are discussed and a model problem, the one-

dimensional Euler equations, is used to illustrate the
derivation of conservative discretizations correspond-

ing to a given nonconservative schemes. Numerical
tests are reported for a collocated grid scheme for sub-

sonic quasi-one-dimensional flow. Finally, concluding

remarks are given.

Euler Equations
The time-dependent three-dimensional Euler system

of compressible flow equations can be written as

o,O + R = 0, (1)

where the conserved variables . _kre Q --

(pu, pv, pw, p, pE) T, representing the momentum

vector, density, and total energy per unit volume, and

R(Q) = 0xF(Q) + 0uG(Q ) + 0_H(Q), (2)

F(Q) =
puv pv_ + p

puw , G(Q) = pvw

pu pv

puE + 'up pvE + vp

puw )

pvw

H(Q) = pw _ +p . (3)

pw

pwE + wp

In general, the simplest form of the differential equa-

tions corresponds to nonconservative equations ex-

pressed in primitive variables, here taken as the set

composed of velocity, pressure, and internal energy,

q = (u, v, w, p, e) T. The primitive variables are related

through the equation of state,

P = (7- 1)pc, (4)

'( )e = E-_ u2+t,2+w _ , (5)

c_ = "re�p, (6)

and 7 is the ratio of specific heats.

The time-dependent nonconservative equations are

found readily by transforming the time-dependent con-

servative equations.

°--q-[otq+R] = 0,oq (7)
0_a 0,Otq+ oQR =

where oq is the Jacobian matrix of the transforma-
0q

tion.

0q

0Q 1/p o o o o ]

0 1/p 0 0 0
-- 0 0 l/p 0 0

0 0 0 '7-1 0
o o o o lip

{oooOo1o1 _v--U --V --W u_-v_+wa

--u --v --w --e q- =

0

o (8)
1

1

2 OF 10

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 2001-2571



For steady-state equations, the time derivative is

dropped.
In an iterative procedure, the correction 5q =-

qn+l _ (in, where n is an iteration counter, can be

computed from the equation

Oq R, (9)
L 5q -- OQ

where L is the principal linearization of the noncon-

servative operator.

L

Q o o

o Q o

o o Q

pc2 G pc2 Oy pc2 G

dO _0 dO
.,/ x "7 Y "7 z

0

q-'gY 0 (10)
p _Z

Q o

o Q

where Q = _&: + _0 u + _0z = (u. V), and the coef-
ficients u = (G v, w), P, and c 2 are evaluated from the

previous approximation q_ and, for the current itera-

tion, are considered as known values unrelated to the

target primitive variables. Tile last equation in (9) is

decoupled from the first four, representing the convec-

tion of entropy along a streamline. The determinant

of the matrix operator L is

Q3 [Q2 _ c2A], (11)

where A is the Laplace operator, and Q2 _ c2A repre-

sents the full-potential operator. Note that the right

side of the correction equation (9) is a combination of
conservative-discretization residuals. The left side ap-

proximates the nonconservative equations. Thus, away
from discontinuities in the flow field, we expect a good

correction to the previous solution approximation.

Distributed

The distributed

equations replaces

M __

Relaxation: Differential

Equations

relaxation method for the Euler

5q in (9) by MSw,

1 01 0 0 -;0_
1

0 1 0 -70u 0
0 0 1 1 (12)-_G 0 ,
0 0 0 Q 0
0 0 0 0 1

so that the resulting matrix L M becomes lower trian-

gular, as

Q
0

LM= 0

pc2&:

¢AO
.,[ x

0 0 0

Q 0 0

0 Q 0

pc_ Ov pc: O_ Q2 - c2A
_o dO o

y _ z

0

0

0

0

Q

(13)

LMSw -- 0q R. (14)
0Q

The diagonal elements of L M are composed of the

factors of the matrix L determinant and represent the

elliptic or hyperbolic partitions of the equation. The

5w variables were termed earlier, 2's "ghost variables,"

because they need not explicitly appear in the calcu-
lations.

The distributed relaxation approach yields fast con-

vergence for both steady and unsteady simulations, if

the constituent scalar diagonal operators in L M are

solved with fast methods. The approach can be ap-

plied to quite general equations; a set of matrices M

has been derived 2'3) that provide a convenient lower

triangular form for the compressible and incompress-

ible equations of fluid dynamics (including a variable

equation of state).

For the compressible Euler equations, the scalar

factors constituting the main diagonal of L M are
convection and full-potential operators. An efficient
solver for the former can be based on downstream

marching, with additional special procedures for re-
circulating flOWS; 7's'14'24 the latter is a variable type

operator, and its solution requires different procedures

in subsonic, transonic, and supersonic regions. In deep

subsonic regions, the fulI-potential operator is uni-

formly elliptic and therefore standard multigrid meth-

ods yield optimal efficiency. When the Mach number

approaches unity, the operator becomes increasingly

anisotropic and, because some smooth characteristic

error components cannot, be approximated adequately

on coarse grids, classical inultigrid methods severely

degrade. The characteristic components are those

components that are much smoother in the charac-
teristic directions than in other directions. 3'1°''13 In

the deep supersonic regions, the full-potential opera-

tor is uniformly hyperbolic with the stream direction

serving as the time-like direction. In this region, an
efficient solver can be obtained with a downstream

marching method. However, downstream marching

becomes problematic for the Mach number dropping

towards unity, because the Courant number associated
with this method becomes large. Thus, a special pro-

cedure is required to provide an efficient solution for

transonic regions. A possible local procedure 4's'1° is

based on piecewise semicoarsening and some rules for

adding dissipation at the coarse-grid levels.
Boundaries introduce some additional complexity in

distributed relaxation. The determinant of LM is

usually higher order than the determinant of L. In

this case, it is higher by the factor Q. Thus, as a

set of new variables, 5w would generally need addi-

tional boundary conditions. In relaxation, because the

ghost variables can be added in the external part of the
domain, it is usually possible to determine suitable
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boundary conditions for 5w that satisfy the original

boundary conditions for the primitive variables. Ex-

amples are given in 2° for incompressible flow with en-

tering and no-slip boundaries. However, to construct
such a remedy may be difficult and/or time-consuming

in general. In addition, enforcing these boundary con-
ditions causes the relaxation ec/uations to be coupled

near the boundaries, not decoupled as they are in the

interior of the domain. Thus, near boundaries and

discontinuities, the general approach 2'3 is to relax the

governing equations directly in terms of primitive vari-
ables. Several sweeps of robust (but possibly slowly

converging) relaxation, such as Newton-Kacmarcz re-
laxation, can be made in this region. The additional

sweeps will not affect the overall complexity because

the number of boundary and/or discontinuity points

is usually negligible in comparison with the number of

interior points.

Distributed Relaxation: Discrete

Equations

The discrete equations are formulated in terms of

discretized primitive variables. One way to attain
a conservative finite-volume discretization, R h, cor-

responding to the discrete version of (1) requires an

interpolation of the primitive variables to the inter-

face locations, maintaining the required order of accu-

racy. In this paper, the considered grid is a Cartesian

structured grid, although generalization to curvilinear

coordinate systems is possible. At this moment, we do

not make any assumptions about locations of the vari-
ables and volume interfaces, i.e., these locations can

be staggered or collocated.

The equations for the relaxation update are formu-

lated similarly to (9)

L h _qh _ 0q ah ' (15)
0q

The right side of the equations are a combination of

the conservative residuals with the coefficients of 0_Q
calculated at the points where the corresponding con-

servative equations are defined.
The derivation of the discrete operator L h requires

special considerations.

• The linear discrete operator L h should relate to
R h as

Lh Oq
= h, (16)

where 7¢h is the principal linearization operator
of R h.

• L h should be factorizable.

• To reflect the correct domain of influence, the dis-

crete factors appearing at the main diagonal of the

matrix product L h M h, where M h is the discrete

distribution matrix (compare to (13)), should be

type-dependent, i.e., central for elliptic factors

and upwind (or upwind biased) for hyperbolic fac-
tors. For Euler equations, it is also required that

the discretization of the full-potential factor re-

flects the physical anisotropies of the differential

full-potential operator.

Some simplification call be achieved by replacing L h

with a less accurate operator providing a good conver-

gence with defect-correction iterations. For staggered-

grid nonconservative formulations, proper operators
L h have already been derived for incompressible and

low-Mach-number flows. 1'2'19'2° For collocated-grid

formulations, a family of factorizable discrete opera-

tors L h is analyzed in. u The collocated-grid scheme

presented in this paper belongs to this family. An

alternative approach also resulting to factorizable dis-

cretizations is proposed by Sidilkover in 16'17

The basic scheme, Lhbasic, is similarly formulated

for both staggered and collocated variable arrange-

ments:

Lhbasic :

1 h
Qh 0 0 70_
0 Qh 0 1-0h
o o

#_Z

p3O O,
dO h d_h £Oh 0
"l x "t_Y "t z

0

0

0

0

Qh

17)

h h
where the discrete derivatives, Oh, 0y, 0_, in all off-
diagonal terms are the second-order-accurate central-

differencing approximation (short, i.e., with h-spacing

for staggered grids and long, i.e., with 2h-spacing, for

collocated grids). All the diagonal terms, Qh ex-

cept 0 h in the fourth equation, are discretized with
the same second-order-accurate upwind (or upwind-

biased) discretization scheme. In the subsonic regime
([u[2 = _2 + _2 + @2 < c2), the 0h-term is differenced

with a second-order-accurate downwind (or downwind-

biased) discretization.
The determinant of the matrix operator Lhbasic is

given by

(Qh)3[QhQh-c2Ah], (18)

where A is a discrete Laplace operator.

For staggered grids, the discrete full-potential op-

erator appeared in the brackets is a reasonable h-

elliptic operator. However, its stencil is somewhat
wide (because of QhQh) and does not reflect the phys-

ical anisotropies of the differential full-potential oper-

ator. The collocated-grid full-potential operator also
has a wide stencil but suffers a more serious drawback:

The Laplace operator A h is a wide (with mesh spac-

ing 25) operator. For slow velocities (I-I _ 0), the
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discrete flfll-potential operator is dominated by this

non-h-elliptic wide Laplacian; and efficiency of any lo-

cal relaxation in error smoothing severely degrades.

A way to improve the discrete full-potential operator
is to change the discretization of Qh to (_h +Ah. Then

the discrete flfll-potential operator is changed to

QhAh + OhQh_ c2Ah. (19)

If the operator .4 h is at least second-order small (pro-

portional to h2), the overall second-order discretiza-

tion accuracy is not compromised. The ideal choice for

A h is A h = (Qh)-17)h,Z)h = :Fh --(QhQh - c2Ah),

where .T h is a desired discrete approximation for the

full-potential factor. We omit the discussion on what
would be the best diseretization for the multidimen-

sional subsonic full-potential operator. Note only that

it is possible to construct a discretization that satisfies

the following properties: (1) At low Mach numbers,
the discretization is dominated by the standard (with

mesh spacing h) h-elliptic Laplaeian. (2) For the Mach

number approaching unity, the discretization tends

to the optimal discretization for the sonic-flow full-

potential oper ator (see < 5,10).

)-1The operator (Qh is a nonlocal operator and
X

its introduction can be effected through a new auxil-

iary variable eh and a new discrete equation Qh_2h :

"Dhp h. For the purpose of constructing a correspond-
ing conservative scheme, the new variable eh should

be further replaced with _bh = Q,¢h, where Q*

is an arbitrary discrete approximation to the oper-

ator Q and eh is another auxiliary variable. Thus,
the new vector of discrete unknowns becomes qh __

(u h, v h, wh, ¢h ph, ¢h, _h)T.

Lhbasic is changed to L h

L h --

The discrete operator

Qh 0 0 0 -1 ohx 0 0

__oh
o Qh o o f _ o o
0 0 Qh 0 70_ 0 0
0 0 0 Qh _7)h 0 0

pc2 pc2 pc2o) 1 Qh o o
0 0 0 -1 0 Q* 0

c_ Oh d,gh c_ _h 0 0 0 Qh
3' x "lvy "l v z

(20)

The corresponding
tributed relaxation is

M h -

distribution matrix, M h , for dis-

defined as

1 h
1 0 0 0 -70_
0 1 0 0 --1oh

0 0 1 0 -{--0 yh

0 0 0 1 _Ph_

0 0 0 0 Qh

0 0 0 0 0

0 0 0 0 0

0 0

0 0

0 0

0 0 , (21)

0 0
1 0

0 1

so that the resulting matrix L h M h becomes lower tri-

angular as

L h M h =

Qh 0 0 0 0 0 0

0 Qh 0 0 0 0 0

0 0 Qh 0 0 0 0

0 0 0 Qh 0 0 0

pc2 cqh pc2 Oh_ pc2 c)h 1 j:'h 0 0
o o o -1 o Q* o

ca--oh cad h c---=Oh 0 0 0 Qh
"t x ,.,/_y .,/ z

(22)

In the following sections, a direct correspondence

between the primitive variable interpolations for cal-

culating fluxes in the conservative discretization and
stencils of the discretized derivatives in the noncon-

servative formulation is established. This correspon-

dence can be used in several ways. For example, one

can define interpolations of variables in a conserva-

tive discretization so that the corresponding operator

L h from (16) coincides with a predefined linear oper-
ator derived from a noneonservative formulation. As

another example, one can derive the linear operator

L h corresponding to a given conservative discretiza-
tion and then try to find an appropriate matrix M h to

design an efficient distributed relaxation. Some mixed

requirements, partially defined by the interpolations
in the conservative discretization and partially by the

discretization stencils in L h, are also possible.

A brief description of the derivation of the

conservative-noneonservative correspondence can be

done as follows. The starting point is the flfll Newton
linearization of the conservative discretization. This

linear operator acts on the perturbation function. The

assumption of smoothness suggests that the changes

of primitive variables on the scale of the characteris-

tic meshsize are small in comparison with the absolute
value of the function. Under this assumption the prin-

cipal linearization, R. h, retains only terms including

the perturbation function derivatives rather than the

perturbation function itself. The product _qq R. h ap-

proximates the set of noneonservative equations; and
one can use it. to establish the relations between the

flux interpolations in the conservative discretization
and the discrete differencing in L h.

In addition to regions with shocks and slip lines,

the smoothness assumption is not valid in the regions

where primitive variables have small absolute values,

e.g., in the neighborhood of a stagnation point; in

these regions, therefore, distributed relaxation should

be replaced with local relaxation.

One-Dimensional Euler System

The steady-state one-dimensional equations express

the conservation of momentum, mass, and total energy

as
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R(Q) = 0, (23)

where

Q =_ (pu,p, pE) T,

a = &_(F).

(24)

(25)

The flux F is defined as

PU2 +p )
F =_ pu ,

puE + up

(26)

Tile vector of primitive variables is q = (u,p, {)T,

The Jacobian matrix of the conservative-to-

nonconservative transformation is defined as

(: 0 0)(1 0)Oq P _ 1 .
--= 0 (7-1) 01 -u 2 _a
0Q 0 0 7 -u -e + T 1

(2r)

The set of the nonconservative equations is defined

as

"/pOx uOx 0 P

(7- 1)e0_ 0 uO. e

= o. (28)

02

Pright _isht -4- J_right
('_- 1)_right

Rh 1 &i_ht O,i_ht
= _ (_- :)/_._

("[--1)Eright _7 mght "_

1(h

('_-- 1)Eleft

PI • ft [T_left
(_- 1 )Eieft

_ ('y/_71eft -{- "_)
(7- 1)El_ft

, (3o)

where the capital letters designate the interpolations of

the primitive variables to the flux locations (E repre-

senting interpolation of e). Note that these interpola-
tions can be different for different equations, therefore,

breve, bar, and hat notations for momentum, mass,

and energy conservation equations respectively. Under
the smoothness assumption, the principal linearization

T_h of R h applied to disturbance function, 5% results

in a set of the three linear operators.

7_h(Sq)
2/90 (_/)right- (#lL)[eft

(7- 1)/_ h

+ 02 h+(1 (7_1)/7:)(/P) right -- (_P) left

#0 2 (fill)right- (fiE)left

The discrete matrix operator corresponding to (28) is
defined as

(-_- 1)<b" ._Ov _b'
P

(29)

where the D-entries are some discrete operators ap-

proximating the first derivatives from (28); the D-

entries approximate zeros, meaning that the difference

operators can either be zeros or approximate a higher

order derivative multiplied by a power of h; the su-

perscript denotes the variable to which the difference

operator is applied. In most cases, the operators are

computed at integer locations except for staggered ar-

rangements, where the breve operators are defined at

half-integer locations.

The conservative discretization of R (23) can be ex-

plicitly written out as

6 oPlO

2PU 7V_ + 1+ A p p(;2
(7-1)E (-_ (7-1) k2h¢'

gh (aq) --
P ((_l/)right-- (_-_)left

(7 -- 1)E7 h

O (_-P)right-(_-P)left

+ (_ - i)_ h

]:_8 (g£)right-- (dE)left

('7 - 1)_2 h

p O P0

(7- 1)E (3,- 1)E (7- 1) _2
/7_kc _
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7_h (gq) -

(_E + -_)(_P)ri_ht- (_P)left
+

(3`- 1)E h

p/._3 (g_)right- (g_)left
i

2(3`- 1)E _ h

(iu),oft

-- \_-4- 2(_-_'j + (3'- 1)E

]_(f3 ,
^

A,
2(7- 1)E '_

where the _h operators are defined at the same lo-

cations as the corresponding operators in (28), i.e.,

for collocated grids - at integer points, for staggered

grids - the first operator, 7_h, is defined at half-integer

points. Tilde values are arbitrary interpolations satis-

fying the desired accuracy order, and the A-notation

is self-explanatory.

Using (27), an approximation to the first equation

of (28) is obtained as

_-
P

+ (3 -̀_))k _p
P

+__:_(_,_ _ Z,v)
P

0:

For staggered grids, the bar-operators ('_h,_ku,_P,

and Ae) are averaged from the neighboring locations.
Approximations to the second and third equations of

(28) are similarly computed:

O_
+_ (3`f_v_ (3'- 1) sp) -I- T (_/_v + ½/_v + ½/kv)

\/_c _ 1 - E_A --

(32)

+_ _)(-_-_s_+
_ _,_ 1_)+T (-,k_ + +

- _r3

--_A --

(33)

For staggered-grid formulation, breve-values are

computed as averages of corresponding values at the

half-integer points.

Comparison of (31)-(33) with (29) gives the follow-

ing relations between conservative and nonconserva-

live diseretizations. The recurrent representation form

is chosen for the sake of compactness.

,h" = 3`D" - (7 - 1)D_, (34)

1 _ u 1 - _, (35)

A_ = t9 (b_- fl (-2h= + _=)), (36)

_v =/)p _ ZSP, (37)

- _+3'M2(_"+_M_S"), /3S/

a_:0 (¼D_+(Z-_-!+_) _ -_a,') 139)

/k _ = b _ - _, (40)

/_ = - 2-_-Z3¢ +/_, (41)

_-_ D_-3'/3 A _- /_ , (42)

where M 2 = u_/c _ = u_/(_(3' - 1)_) is the local

(squared) Mach number at the point defined by the

subscript index j, /3 ___-(3' - 1)M 2, 0 _= _+-_, and
1

0 = rq-z__.

Derivation of the conservative diseretization
corresponding to a given nonconservative scheme

Let us consider three different discretizations of (29)

associated with the subsonic flow regime. In all the

cases the /)-entries are zeros and other off-diagonal
terms are second-order accurate central discretizations

of the first derivative.

A First-order scheme: D= and/)_ are the first-order

upwind discretizations, D v is the first-order down-
wind discretization.

B Second-order biased scheme: D _ and /)_ are the

second-order upwind discretizations, D p is the

second-order downwind discretization.

C Second-order central scheme: D'*, b E , and /_j
are the second-order central discretizations.

The following fornmlas define the interpolations for

evaluating fluxes in the conservative discretization

(30); the superscript NC denotes the fluxes in rep-
resentation of the D-derivative terms of (29) (see Ta-

ble 1.)
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Table 1

NC NC"

Dj = h

pNc pNc
b_j = '+_-h j-½

r"-rN C (] N C:

D_'= vj+_-h _-½

pNC pNC

D_ = '+½-h j-½

ONc _UNC
@= J+lh ,-i

ENc _Nc
- 1-- £.

_ '+_ '--2

.LJj h

The fluxes in representation of the D-derivative terms of (29).

A

u..=_
h

C =uj

_jj = p i+l--pj-12h

pNc = 1 !p
j+g gPj+l + 2 3

Dv = u_+_-uj_,

fjiC_½ 1 2h 1[ _Uj+ 1 + _Uj

DP=_
_NC h
• j+½ =PJ+I

2h
f[NC 1 1
_.j+} = 7Uj+I + _Uj

D3e.-_
- h

^ NC
E:_t : ei

j "r "_

B

b' = _"'-2"J-h'+}"s-_
NC __ 3 1
i_ - 2uj - _uj-i

De = pJ+_-pi-_

_)N : 1 l_p.
j+_ _Pj+I + 2 .7

Du : u_+l-uj_l

5_C_ 1 2h t_uj+l + _uj

_3_p[?p. = - ½vs+_+2vj+, _
_NC 3 h 1

,j+½ = 7pj+l - gpj+2

_)_ = ui+l-uJ-1 2h

^ NC 1 1
U.,= +

3+_ _Uj+I _Uj

U_.¢'" a . .

NC =3j+_ 7ej -- ½ej-1

C

_NC 1 1
= _Uj+ 1 _Uj_+½ +

: Pi+l-pj-1 2h

_NC 1 lp.
j+½ = -ffPj+l + _

_]N 1 1
j+_ _Uj+l q- _Uj

/SN_ = _
j+_ _Pj + -ffPj+l

Dj ---- IIJ+l--_gJ--12h

^ NC 1 ½ uj= _Uj+Iu_+_ +

2h

/_Nq : ½_j ___ 1j+_ 7Q +_

7f)Nq (1 7) _NC- = Uj+] (43)uj+½ j+._+ - ,
1 grNC 1 -

Uj+] = _,j+½ + -_Uj+½, (44)

1 (/Sj_ + 7M2/Sj+½) (47)PJ+_ -- 1 -{-7I_,12

_P¢+½=_[ J+_

-t-_(7- 1)(1 + 3'Mj?+½/Sj+½) (48)

/_j+½ = _,N+C½, (49)

_j+½: _:_+½, (50)
_j+½= _?j+_ (51)

1

where ¢ _= _.

Details of a collocated-grid scheme

The flux computations for a collocated-grid scheme

can be constructed more simply by separating the mass

flux contributions in each equation. Using the defini-

tions in Table 1, the flux contributions at the interface

locations j + _ are given below.

_NC _f NC

(pu) -- (7-- 1) _NC' (52)

(pu _ + p) = (pu)(fNC + _NC, (53)

(puE -I- pu) = (pu)E NC -t- _)NC(jNC. (54)

The factor ¢ is introduced into the mass flux so the

scheme remains conservative, as

_NC 3 1_+½= -_¢j - -_¢___. (55)

where the fully-upwind scheme is used and Q* is taken

as Q. Since ¢ is second order small, zero conditions
are imposed at the boundaries.

Numerical Tests

Computational results are shown in this section for

the quasi-one-dimensional Euler equations. A uniform

grid of N points is used over the domain 0 < x < 1
with h = 1/(N- 1). The area distribution is defined-as

_(x) = 1 - 0.8x(1 - x). The flow is fully subsonic and
the inflow Mach number is 0.5. For all of the results

presented below, we overspecify values from the exact
solution of the differential problem at. the boundary

and at locations outside the domain; hence conserva-

tive fluxes are established at the half-grid locations

surrounding the interior points.
The maximum discretization errors versus grid size

in Fig. 1 shows a second-order spatial convergence.
The results were converged using a Fnll Multigrid

(FMG) cycle starting from a converged solution for
h = 1/16 and using two relaxations of a nonconser-
vative operator, Eq. (15), at each subsequent level.

In Table 2, the L:-norm of the discretization error

in pressure, ed = pj -- p(xj) _:aa, corresponds to the
results with zero algebraic erors. The ratios of the al-

gebraic error in this L2-norm to the discretization error
in this norm for the FMG cycle are quite small at each

grid. Because the nonconservative operator is factoriz-
able and distributed relaxation has been demonstrated

previously to be efficient solvers for nonconservative

discretizations, we infer that distributed relaxation

would yield high efficiency for this conservative dis-
cretization. It remains to demonstrate this for more
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10 "1

10 =

.i 10"_

a
E

"_ 10"4

10;

velocity
pressure
Intemal energy

I I I I i I Ill I , , , ,, ,ll

10-_ 10 "_

h

Fig. 1 Maximum discretization errors versus grid

size for model problem.

h I1 < 11:p II all/ll dll :P
1/32 0.7323x10 -a 0.043

1/64 0.1618x10 -_ 0.086

1/128 0.3856x10 -4 0.006

1/256 0.9447x10 -s 0.004

Table 2 Tile L2-norm of errors in p at convergence

and the ratio of algebraic-to-discretization errors

after an FMG cycle with two nonconservative re-

laxations on each grid.

general situations, including applications with more

general boundary conditions and to flows with cap-

tured shocks.

Concluding Remarks

This paper has provided some foundations for the

application of distributed relaxation to conservative

discretizations. A direct correspondence between the

primitive variable interpolations for calculating fluxes

in conservative finite-volume diseretizations and sten-

cils of the discretized derivatives in the nonconser-

vative formulation has been established. Based on

this correspondence, one can design a conservative

discretization which is very efficiently solved with a

nonconservative relaxation scheme. This has been

demonstrated for a conservative discretization of the

quasi one-dimensional Euler equations on a collocated

grid. Formulations for both staggered and collocated

grid arrangements as well as extensions of the general

procedure to multiple dimensions have been discussed.
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